

STATISTICS HANDBOOK FOR THE TI-83

Larry Morgan, Montgomery County Community College, Blue Bell, PA

Important notice regarding book materials

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this book. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Permission is hereby granted to teachers to reprint or photocopy in classroom, workshop, or seminar quantities the pages or sheets in this work that carry a Texas Instruments copyright notice. These pages are designed to be reproduced by teachers for use in their classes, workshops, or seminars, provided each copy made shows the copyright notice. Such copies may not be sold and further distribution is expressly prohibited. Except as authorized above, prior written permission must be obtained from Texas Instruments Incorporated to reproduce or transmit this work or portions thereof in any other form or by any other electronic or mechanical means, including any information storage or retrieval system, unless expressly permitted by federal copyright law. Address inquiries to Texas Instruments Incorporated, 7800 Banner Drive, M/S 3918, Dallas, TX 75251, Attention: Manager, Business Services.

Copyright © 1997 by Texas Instruments Incorporated. All rights reserved.

We invite your feedback on the material in this book. Call us at **1-800-TI-CARES**, or send us e-mail at **ticares@ti.com** with any of your suggestions or comments. You may also call or send e-mail to obtain information about other current and future publications from Texas Instruments.

Солтелтя

Do	Th	is First	1					
Activity								
1:	De	escribing One-Variable Data	11					
	To	ppic						
	1	Histograms and Frequency						
		Tables From Raw Data	11					
	2	Histograms From Frequency and						
		Relative Frequency Tables	13					
	3	Stem-and-Leaf Plots and Dot Plots	514					
	4	Measures of Central Tendency						
		and Variability	16					
	5	Measures of Position and						
		Cumulative Relative Frequency						
		Distributions (Ogives):						
		Percentiles and Quartiles,						
		Standard Scores (z-scores)	18					
	6	Box Plots and Five-Number						
		Summary	21					
2.	D	serihing Rivariata Data						
4.	л Г)	wo Quantitative Variables)	22					
			20					
	70	Sector Plots	22					
	1	Completion and Lincovity	23					
	0	Time Plots	24 25					
	9	Control Charts	20 26					
	10	Control Charts	20					

Act	ivity	
3:	Fitting an Equation to	
	Bivariate Data	27
	Topic	
	11 Linear Least Squares	
	Regression Line	28
	12 Polynomial Regression:	
	Quadratic, Cubic, and	
	Quadrinomial	30
	13 Fits Linear by Transformations:	
	Logarithmic, Exponential, and	04
	Power Regression	31
	14 LOGISTIC FIL 15 Median Median Linear Fit	33
	15 Mediai-Mediai Linear Fit	36
	10 mgonometric sine rit	50
4:	Describing Categorical Data	37
	Topic	
	17 Bar Charts	37
	18 Two-Way Table	39
5:	Collecting Data	45
	Topic	
	19 Random Sampling and	
	Randomization for Experiments	45
	20 Gathering Data with the CBL	48
6:	Demonstrating Probability,	
	Simulations, and Probability	
	Distributions	51
	Topic	
	21 Coin Toss	
	(The Law of Large Numbers)	51
	22 Factorials, Permutations, and	
	Combinations	53
	23 Binomial Distribution	54
	24 Normal Distribution 25 Distribution of Sample	90
	25 Distribution of Sample Proportions (Simulation)	59
	26 Distribution of Sample Means	50
	(Central Limit Theorem)	
	(Simulation)	61
	27 Assessing Normality (Normal	01
	Probability Plots)	63
	28 Distribution of the Difference of	
	Two Independent Sample Means	
	(Simulation)	66

	Topic	
	29 Geometric Distribution	67
	30 Hypergeometric Distribution	68
	31 Poisson Distribution	70
	32 Exponential Distribution	71
7:	Estimating and Finding Confidence	ce
	Intervals	73
	Topic	
	33 Estimating a Normal Population	
	Mean μ (σ Known)	73
	34 Estimating a Population Mean µ	
	(o Unknown)	76
	35 Estimating a Population	
	Proportion	78
	36 Estimating a Normal Population	
	Standard Deviation σ	80
	37 Estimating the Difference in Two	
	Population Means	82
	38 Estimating the Difference in Two	
	Population Proportions	86
	39 Unbiased and Biased Estimators	87
8.	Tasting Hypotheses	
0.	resung nypomeses	
0.	(Means, Proportions, and	
0.	(Means, Proportions, and Standard Deviations)	89
0.	(Means, Proportions, and Standard Deviations) Topic	89
0.	(Means, Proportions, and Standard Deviations) Topic 40 Testing Hypothesis of a	89
0.	(Means, Proportions, and Standard Deviations) Topic 40 Testing Hypothesis of a Population Mean μ (σ Known)	89 89
	(Means, Proportions, and Standard Deviations)Topic40 Testing Hypothesis of a Population Mean μ (σ Known)41 Testing Hypothesis of a	89 89
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 	89 89 92
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a 	89 89 92
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 	89 89 92 93
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal 	89 89 92 93
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 	89 89 92 93 94
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two 	 89 92 93 94
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 	89 92 93 94 95
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Dervelation Propertion 	 89 92 93 94 95 90
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hymothesis of Standard 	 89 92 93 94 95 98
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Standard Deviations of Two Normal 	 89 92 93 94 95 98
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Two Normal Populations of Two Normal Populations 	 89 92 93 94 95 98 90
	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Standard Deviations of Two Normal Populations 	 89 92 93 94 95 98 99
9:	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Standard Deviations of Two Normal Populations 	 89 92 93 94 95 98 99
9:	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Standard Deviations of Two Normal Populations Testing Goodness-of-Fit and Two-Way Table Chi-Square 	 89 92 93 94 95 98 99 101
9:	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Standard Deviations of Two Normal Populations Testing Goodness-of-Fit and Two-Way Table Chi-Square <i>Topic</i> 	 89 92 93 94 95 98 99 101
9:	 (Means, Proportions, and Standard Deviations) <i>Topic</i> 40 Testing Hypothesis of a Population Mean μ (σ Known) 41 Testing Hypothesis of a Population Mean μ (σ Unknown) 42 Testing Hypothesis of a Population Proportion 43 Testing Hypothesis of a Normal Population Standard Deviation σ 44 Testing Hypothesis of Two Population Means 45 Testing Hypothesis of Two Population Proportions 46 Testing Hypothesis of Standard Deviations of Two Normal Populations Testing Goodness-of-Fit and Two-Way Table Chi-Square <i>Topic</i> 47 Chi-Square Goodness-of-Fit Test 	 89 92 93 94 95 98 99 101 101

10:	Analyzing Variance (ANOVA)	107
	 Topic 49 Completely Randomized Designs (One-Way ANOVA) 50 Randomized Block Design (Program A1ANOVA) 51 Two-Factor Designs With Equal Replicates 	107 110 113
11:	Inference for Correlation and Regression	115
	52 Simple Linear Regression and Correlation (Hypothesis Test and Confidence and	
	Predictive Intervals) 53 Multiple Regression and Program	115
	A2MULREG	119
12:	Forecasting	125
	<i>Topic</i> 54 Exponential Smoothing 55 Multiplicative Model	126
	(Program FORECAST)	129
13:	Some Nonparametric Tests	133
	 Topic 56 Sign Test for Two Dependent Samples 57 Wilcoxon Signed-Banks Test for 	133
	Two Dependent Samples 58 Mann-Whitney-Wilcoxon Test for	135
	Two Independent Samples	137
	Independent Samples	139
Apj	pendix Cross-References to Two	
л.	Statistics Textbooks	143
B:	Program Listings for A1ANOVA, A2MULREG and FORECAST	145
Ind	lex	153

Preface

The Statistics Handbook for the TI-83 is intended as an aid in using the TI-83 graphing calculator with most introductory statistics texts. The TI-83's powerful statistical features allow you to concentrate on important ideas and concepts rather than on mechanical computations. This handbook demonstrates, with examples, how to use the features of the TI-83 to solve problems or to clarify ideas and concepts from your text. Your text will explain the appropriateness of the statistical features used and any restrictions.

This handbook consists of beginning instructions and 59 topics. A knowledge of the Introduction and Topic 1 is assumed for the other topics. Topics are grouped under 13 activities-activities not chapters-so there will be no confusion with the chapters of your statistics text. Each activity has a brief introduction that covers the topics within that activity. For example, Activity 1 describes one-variable data using data sets of building heights in Philadelphia and other cities. This data is used in the topics in Activity 1 to construct histograms, stem-and-leaf plots, and box plots, and to calculate measures of center, variability, and position.

Fifty-five of the 59 topics use the built-in features of the TI-83. Three advanced topics (multiple regression, two-way analysis of variance (ANOVA), and a time series decomposition) use programs that are available from your instructor or from TI over the internet (www.ti.com) or on disk (1-800-TI-CARES). For ease of reference, these programs are also listed in Appendix B of this handbook. You can transfer the programs to your TI-83 with the TI-GRAPH LINK^M. (Information on how to obtain TI-GRAPH LINK is available from 1-800-TI-CARES.)

Most of the topics present a procedure that you can use to work problems from your text. In addition, the following topics present simulations to help clarify important ideas:

Topic 21—The Law of Large Numbers Topic 25—Distribution of Sample Proportions

Topic 26—Distribution of Sample Means (Central Limit Theorem)

Topic 28—Distribution of the Difference of Two Independent Sample Means

Topic 39—Unbiased and Biased Estimators

Other topics present both a procedure you can use to work problems from your text and also a simulation to clarify the meaning of the results of that procedure. For example, Topic 33 shows how to calculate a confidence interval with the TI-83 and then uses a simulation to explain the meaning of the term "confidence interval."

The outside back cover provides a quick reference to the functions of the TI-83 and the topics within the handbook. Appendix A cross-references two introductory statistics textbooks, providing examples of how the sections of introductory statistics texts can be aided by the topics in this handbook. You can prepare a similar sheet for your text and tape it to the inside back cover of this handbook for a convenient reference.

Finally, a word of thanks to my students and colleagues who have been supportive of using calculators in the classroom. Thanks to Mike Koehler, Blue Valley North High School, and to Walter Walker, Eckerd College, who reviewed the first draft of this handbook and made helpful comments and suggestions. Thanks to Charlotte Andreini, Jeanie Anirudhan, Brenda Curry, Nelah McComsey, and all others at Texas Instruments who helped make this handbook possible. Special thanks to Narissa for her help and to Abui for her continued support.

-Larry Morgan

to Bivariate Data

Fitting an Equation In this activity, you will start by fitting a linear least-squares regression line in Topic 11 to the U.S. Census data given on the next page. This will set the stage for the activities that follow.

> The shape of the resulting curve looks like part of a parabola (a quadratic equation), which is one of the polynomial regression fits discussed in Topic 12 (cubic and quadrinomial fits being the others).

> Population models suggest exponential or logistic growth as possible fits. Exponential growth will be discussed in Topic 13 as a fit that uses a transformation of data to make it more linear (logarithmic and power fits are the others). The logistic fit (which is our selection for the best fit) is covered in Topic 14.

Topic 15 returns to fitting a straight line to data, but by a technique that is more resistant to unusual values (medianmedian fit) than the least-squares fit of Topic 11.

Topic 16 fits a trigonometric sine curve to periodic data.

Note that if your fit display screens are different from those shown in this activity (do not show \mathbf{r}, \mathbf{r}^2 or \mathbf{R}^2 when this handbook does) your diagnostic flag is off. Topic 8 shows how to turn it on.

Q Read Topic 11 before reading other topics in Activity 3.

Setting Up

The main data set for this activity is the U.S. Census data (in millions of people) given on the next page. Store it in list **USPOP** with a coded year value of 1 to 18 for the years 1810 to 1980 in list L₁. The value for 1990 is 249.63 million people, but you do not include this in the list because you will use it to check how well the fit equation can predict it.

© 1997 TEXAS INSTRUMENTS INCORPORATED

١	YEAR:	1810	1820	1830	1840	1850	1860	1870	1880	1890
L1	X:	1	2	3	4	5	6	7	8	9
USPOF	Р Y:	7.24	9.64	12.87	17.07	23.19	31.44	39.82	50.16	62.95
١	YEAR:	1900	1910	1920	1930	1940	1950	1960	1970	1980
	X:	10	11	12	13	14	15	16	17	18
	Y:	75.99	91.97	105.71	122.78	131.67	151.33	179.32	203.21	226.5

- 1. Set up **Plot1** for a **Scatter** plot, as shown in Topic 7 and in screen 1.
- 2. Press ZOOM 9: ZoomStat TRACE to produce the plot of your data, as shown in screen 2.

The top of the plot screen shows the setup with **P1:L1,USPOP**. The points seem to lie more on a curve than a straight line, but you will start with fitting the linear least-squares regression line (Topic 11) to the data to set the stage and understand the notation for the activities that follow.

Topic 11—Linear Least Squares Regression Line

The following procedure obtains a linear least squares regression line.

- 1. Calculate the fit equation.
 - a. Press STAT <CALC> 4:LinReg(ax + b) L1 , LUSPOP
 , Y1, as shown in screen 3, with Y1 pasted from
 VARS <Y-VARS> 1:Function 1:Y1.
 - b. Press ENTER for screen 4 showing your linear fit
 Y1 = 12.751x 35.416 stored in Y1 in the Y= editor.
- 2. Plot data scatter and fit equation.
 - a. Keeping Y1 turned on (this was done automatically in step 1), turn on **Plot1** as a **Scatter** plot (as shown in Topic 7) with all other Y= functions and stat plots turned off.
 - b. Press ZOOM **9:ZoomStat** TRACE for both a **Scatter** plot of the data and a plot of the regression line, as shown in screen 5.

Y=7.24

8=1

(2

Note: You would get the same results with STAT <CALC> 8:LinReg(a + bx) L1 , LUSPOP, Y1 but the slope would be b instead of a.

3. Plot residuals.

Step 1 automatically stores the residuals in list **RESID**.

- a. Set up Plot2 as a Scatter plot with Xlist:L1 and Ylist:RESID (making sure all other stat plots and Y= plots are off).
- b. Press ZOOM 9:ZoomStat TRACE for screen 6.

The non-random pattern of the **Scatter** plot of residuals confirms that the linear least squares regression line does not fit the data very well. Note that the pattern looks quadratic.

The *residual* is the difference from the actual y-value and the value obtained by plugging the x-value that goes with the y-value into the regression equation. When x = 1, you have Y1 = 12.751x - 35.416, which becomes Y1(1) = 12.751(1) - 35.416 = -22.665. The difference from the actual value of 7.24 is 7.24 minus -22.665, or 29.905.

When you paste list **RESID** to the home screen (as shown in the last two lines of screen 7), you confirm this calculation.

4. Measure the fit (SSE).

With some residuals positive, some negative, and some possibly zero, you will use the Sum of the Squared Residual Errors (SSE) as your measure of how close the points fit the curve. (If all the points are on the curve, this would be zero.) SSE is calculated in screen 8, where SSE = **4651.51534**, with **sum** pasted from 2nd [LIST] **<MATH> 5:sum**.

- 5. Predict the population in 1990 (X = 19).
 - a. Paste Y1 to the home screen, and then type (19)
 (1), as shown on the first line in screen 9.
 - b. Press ENTER for the next line, which is the predicted value of **Y**, or **206.845**.

Because you know the actual census value was 249.63, you can calculate the difference. The difference is **42.78516**, or 17 percent, a fairly large error. (See the calculations in screen 9. Note **Ans** is from 2nd [ANS] in the last row of the keyboard.)

Note: For a perfect fit, the residuals will be all zero and [<u>Z00M</u>] **9:ZoomStat** will result in a WINDOW RANGE error since Ymin = 0 Ymax = 0. If you still wish to see the plot, change Ymin = -1 and Ymax = 1 and then press [TRACE].

	V1(1) -22.66538012 7.24-Ans 29.90538012 LRESID (29.90538012 19
(7)	

6. Calculate \mathbf{r} and \mathbf{r}^2 as measure of linearity.

 \mathbf{r}^2 is related to SSE in the current case. To show this, you need to calculate the Sum of Squares Total (SST); that is, the sum to squared differences for each *y* data value and the mean of the complete **Y** list. (SST depends only on the data list and is independent of the fit equation used.)

 $\begin{array}{l} \mathrm{SST} = \mathsf{sum}((\ \mathsf{LUSPOP} - \mathsf{mean}(\ \mathsf{LUSPOP}))) \\ \hline x^2 \) = 83420.06 \ \mathrm{with} \ \mathrm{the} \ \mathrm{mean} \ \mathrm{pasted} \ \mathrm{from} \ \underline{2} \mathrm{nd} \ [\mathsf{LIST}] \\ <\!\!\mathsf{MATH}\!\!> 3:\!\!\mathsf{mean}. \ \mathbf{r}^2 = 1 - \mathrm{SSE}/\mathrm{SST} = \mathbf{0.9442} \ \mathrm{as} \ \mathrm{before} \ \mathrm{and} \\ \mathrm{in} \ \mathrm{screen} \ 10. \end{array}$

Topic 12—Polynomial Regression: Quadratic, Cubic, and Quadrinomial

Press <u>STAT</u> **<CALC>** to reveal screen 11. This topic covers the last three functions shown.

5:QuadReg fits $Y = ax^2 + bx + c$ **6:CubicReg** fits $Y = ax^3 + bx^2 + cx + d$ **7:QuartReg** fits $Y = ax^4 + bx^3 + cx^2 + dx + e$

Quadratic Fit

In this procedure, you will fit the quadratic equation to the population census data. The procedure for the other fits is the same.

Note th	at the	numbers	of the	steps	below	refer	to t	the	steps	in
Topic 1	11 tha	t present i	nore d	letail.						

Ste	ep in Topic 11	Display
1.	Calculate the fit equation.	Press STAT <calc></calc> 5:QuadReg L1 , LUSPOP , Y1 (with Y1 pasted from VARS) <y-vars> 1:Function 1:Y1</y-vars>) for screen 12. Press ENTER for screen 13. Note that $R^2 =$ 0.9984 compared to $r^2 = 0.9442$ for the linear regression in Topic 11.
2.	Plot data scatter and fit equation	The regression plot through the data appears to fit very well. (See screen 14.)

Note: Small residuals (SEE) give an r^2 close to one. Large residuals (SEE) give an r^2 close to zero.

	EDIT DELLE TESTS
	2:2-Var Stats 3:Med-Med
	4:LinRe9(ax+b) ∎QuadRe9
(11)	6:CubicRe9 7↓QuartRe9

(co	nt.) Step in Topic 11	Display		
3.	Plot residuals.	The residual plot appears more random than that in Topic 11. (See screen 15.)		
4.	<i>Measure the fit (SSE)</i> .	As shown in screen 16, SSE = 131.387 for the quadratic fit compared to 4651.515 in Topic 11.		
5.	Predict population in 1990 (X = 19).	The prediction for 1990 $(X = 19)$ is off by less than 1 percent (0.36 percent). (See screen 17.)		
6.	Calculate r and r ² as measure of linearity.	Note that SSE is directly related to \mathbf{R}^2 for this multiple linear least squares fit as it was to \mathbf{r}^2 before for the "simple" linear least squares fit. ($Y = ax^2 + bx + c = a X_2 + bX_1 + c$ is linear in the coefficient <i>a</i> , <i>b</i> , and <i>c</i> with $X_2 = (X_1)^2$.) (See screen 18.)		

Topic 13— Fits Linear by Transformations: Logarithmic, Exponential, and Power Regression

Press STAT **<CALC>** and then \bigtriangledown a few times to reveal screen 19. This section discusses the last three functions shown.

- **9:** LnReg Fits $y = a + b(\ln x) = a + b X$ (linear in *a* and *b*). Calculates *a* and *b* using linear least squares on lists of ln *x* and *y* instead of *x* and *y*.
- **0: ExpReg** Fits $y = a * b^x = a * b^x$. Transforms to $(\ln y) = (\ln a) + (\ln b)x = A + Bx$ (not linear in *a* and *b*). Calculates *A* and *B* using linear least squares on list of *x* and ln *y* instead of *x* and *y*, then $a = e^A$ and $b = e^B$.
- A: **PwrReg** Fits $y = a * x^{b} = a * x^{b}$ Transforms to $(\ln y) = (\ln a) + b(\ln x) = A + bX$ (not linear in *a* and *b*). Calculates A and b using linear least squares on list of ln *x* and ln *y* instead of *x* and *y*, then $a = e^{A}$.

EDIT CHEC TESTS 5↑QuadRe9 6:CubicRe9 7:QuartRe9 8:LinRe9(a+bx) EELnRe9 0:ExpRe9 0:ExpRe9 19

Exponential Fit

You will fit the exponential equation to the population census data; however, the procedure for the other fits is the same.

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Ste	p in Topic 11	Display	
1.	Calculate the fit equation.	Press <u>STAT</u> <calc> 0:ExpReg</calc> L1 , LUSPOP , Y1 ENTER for screens 20 and 21	ExpRe9 L1,LUSPOF (20) ExpRe9
		It is best to turn off the diagnostic flag (see Topic 8) here because r and r^2 pertain to the transformed equation above and not to the fit	9=3*6*X a=8.15994498 b=1.222362376 r ² =.9694770718 r=.9846202678 (21)
		equation in screen 21.	sum(LRESID2) 9848-986811
4. 6.	Measure the fit (SSE). Calculate r and r ² as measure of linearity.	As shown in screen 22, SSE = 9848.987, but there is no relationship between this and r^2 (.8819 \neq .9695)	1-Ans/83420.0592 .8819350297
2. 3.	Plot data scatter and fit equation. Plot residuals.	As you can see in screens 22 and 24, the exponential curve does not fit well. The residual plot shows the unfortunate pattern of larger errors as time progresses.	(22)
5.	Predict population in 1990 (X = 19).	Screen 25 shows an error of -48.3 percent for 1990.	(23) X=1 Y=7.24
			(24) P 2:L1;RESID

(25)

28962 28962 66716

Topic 14—Logistic Fit

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Ste	p in Topic 11	Display	
1.	Calculate the fit equation.	Press STAT <calc></calc> B:Logistic L1 , LUSPOP , Y1 for screen 26. Press ENTER , and notice the busy symbol in the upper-right corner of the display screen as calculations are being crunched out. The results are shown in screen 27. The technique used attempts to recursively estimate a , b , and c to make SSE as small as possible, and this takes some time.	(26) Logistic L1, LUSP OP, Y1■ Logistic 9=c/(1+ae^(-bx)) a=41.4518297 b=.2298696561 c=370.0016549 (27)
2. 3.	Plot data scatter and fit equation. Plot residuals.	The logistic fit curve seems to snake through the data as seen in screen 28 and confirmed by the residual plot shown in screen 30.	(28)
		If after making the first plot (screen 28) you press 200M 3 : Zoom Out ENTER, you get the view that is shown in screen 29. The logistic curve levels off. It does not continue to grow as fast as the quadratic and exponential curves.	(29) X=1.0361702 Y=7.8765613
4. 5.	Measure the fit (SSE). Predict population in 1990 (X = 19).	Screens 31 and 32 show SSE = 307.184 . The prediction for 1990 is 2.85 percent off the actual value.	(30) X=15 Y=-8.257338
Co	mparison of Fits Used (Topics 11 to 14)	(31) sum(LRESID≥) 307.1836453

The quadratic fit seemed best in the short run, but the logistic fit is not far behind and, hopefully, has the advantage of a more realistic long-run projection.

Fit	SSE	% Error X = 19	Resid Plot	Long Run
Linear	4652	17.1	clear pattern	grows linearly
Quadratic	131	0.4	seems random	grows prop to x ²
Exponential	9849	-48.3	clear pattern	grows exponentially
Logistic	307	2.9	screen 30	levels off

7.12004952 Ans/249.63 .0285224112 (32)

© 1997 TEXAS INSTRUMENTS INCORPORATED

099505

Topic 15—Median-Median Linear Fit

Xlist in L1: (horsepower)	75	80	85	100	125	135	160	175
Ylist in L2: (milles per gal.)	27	25	15	22	19	16	10	12

The data set above was selected to show the advantage of the median-median fit. Because the medians of batches of data are used, the fit is resistant to unusual data points.

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Ste	ep in Topic 11	Display	
1.	Calculate the fit equation.	Press <u>STAT</u> <calc></calc> 3:Med-Med L1 , L2, Y1 for screen 33. Press <u>ENTER</u> for screen 34.	(33) ■ Med-Med L1,L2,V Med-Med y=ax+b a=-,1625
4.	Measure the fit (SSE).	As shown in screen 35, SSE = 101.25 .	Б=38.26041667
2.	Plot data scatter and fit equation	Press $\overline{Z00M}$ 9:ZoomStat \overline{TRACE} For both a Scatter plot of the data (with point x = 85 and y = 15 highlighted) and of the Mad line, as shown in generation	(34) (35) sum(LRESID ²) 101.250868
		36.	(36) X=85 Y=15

Comparison with Least-Squares Fit Line

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Step in Topic 11	Display	
1. Calculate the fit equation.	Press <u>STAT</u> <calc></calc> 4:LinReg(ax + b) L1 , L2 , Y2 for screen 37 (be sure that you use Y2 and not Y4 as	(37) LinReg(ax+b) L1, L2,Y2∎
	before). Press ENTER for screen 38. Note that $\mathbf{r} =823$.	=====================================
4. Measure the fit (SSE).	As shown in screen 39, SSE = 83.77 is less than the 101.25 of Med-Med as theory	(38)
	guarantees. But having the smallest SSE does not always guarantee the better fit, as you can observe in the plots that follow in screen 40.	(39) sum(LRESID ²) 83.76609642
2. Plot data scatter and fit equation	With Plot1 , Y1 , and Y2 on, press $\boxed{200M}$ 9:ZoomStat for screen 40, which shows both the Med-Med and LinReg fit lines. Note that the least-squares line is pulled toward point x = 85, y = 15.	(40)
	toward point $\mathbf{x} = 85$, $\mathbf{y} = 15$.	

If the point x = 85, y = 15 is deleted from L₁ and L₂ and a LinReg line plotted to the data, we obtain the results shown in screens 41 and 42. The slope and the intercept are about the same as the Med-Med fit without deleting the data point (see screen 34); r = -.976 compared to -.8229 in screen 38, and SSE = 11.74, reduced from 83.77 in screen 39. The Med-Med fit is a good check on how influential such points are.

Topic 16—Trigonometric Sine Fit

Those who deal with periodic data, in Physics experiments, for example, will want to read about the **SinReg** (sinusoidal regression) function in the Statistics chapter of the *TI-83 Guidebook* for more information on this topic. The following data is from the example in the *Guidebook* with *x* representing the day of the year (equal intervals of every 30th day) and *y* the number of daylight hours in Alaska.

x (day) L 1:	1	31	61	91	121	151	181	211	241	271	301	331	361
y (hrs) L2:	5.5	8	11	13.5	16.5	19	19.5	17	14.5	12.5	8.5	6.5	5.5

Note that the numbers of the steps below refer to the steps in Topic 11 that present more detail.

Step in Topic 11	Display	
1. Calculate the fit equation.	Press STAT <calc></calc> C:SinReg L1, L2, Y1 for screen 43. Press ENTER for screen 44.	(43) SinRe9 L1,L2,Y1■ SinRe9
2. Plot data scatter and fit equation.	Enter 2nd [STAT PLOT] Plot1> with Xlist: L1 and Ylist: L2. (Y1 is on from step 1, but all other Y= or stat plots must be off.)	9=a*sin(bx+c)+d a=6.770292445 b=.0162697853 c= -1.215498579 d=12.18138372 (44)
	Press ZOOM 9:ZoomStat [TRACE], and both a Scatter plot of the data and the sine fit will show as shown in screen 45. Press ZOOM 3: Zoom Out	(45) Y=5.5
	in screen 46. This view better shows the periodic nature of the fit.	
		(46) X=1.7659575 IY=5.540645