

These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 4,200 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, contact www.collegeboard.com.

Copyright © 2002 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.

CALCULUS AB

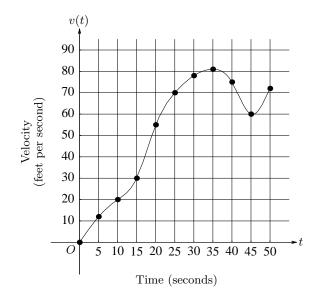
Section II

Time—1 hour and 30 minutes

Number of problems—6

Percent of total grade—50

A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS ON THIS SECTION OF THE EXAMINATION.


REMEMBER TO SHOW YOUR SETUPS AS DESCRIBED IN THE GENERAL INSTRUCTIONS.

- 1. Let R be the region bounded by the x-axis, the graph of $y = \sqrt{x}$, and the line x = 4.
 - (a) Find the area of the region R.
 - (b) Find the value of h such that the vertical line x = h divides the region R into two regions of equal area.
 - (c) Find the volume of the solid generated when R is revolved about the x-axis.
 - (d) The vertical line x = k divides the region R into two regions such that when these two regions are revolved about the x-axis, they generate solids with equal volumes. Find the value of k.

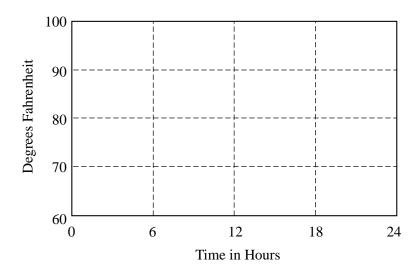
GO ON TO THE NEXT PAGE

- 2. Let f be the function given by $f(x) = 2xe^{2x}$.
 - (a) Find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$.
 - (b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.
 - (c) What is the range of f?
 - (d) Consider the family of functions defined by $y = bxe^{bx}$, where b is a nonzero constant. Show that the absolute minimum value of bxe^{bx} is the same for all nonzero values of b.

GO ON TO THE NEXT PAGE

	v(t) (feet per second)
0	0
5	12
10	20
15	30
20	55
25	70
30	78
35	81
40	75
45	60
50	72

- 3. The graph of the velocity v(t), in ft/sec, of a car traveling on a straight road, for $0 \le t \le 50$, is shown above. A table of values for v(t), at 5 second intervals of time t, is shown to the right of the graph.
 - (a) During what intervals of time is the acceleration of the car positive? Give a reason for your answer.
 - (b) Find the average acceleration of the car, in ft/sec^2 , over the interval $0 \le t \le 50$.
 - (c) Find one approximation for the acceleration of the car, in ft/sec^2 , at t=40. Show the computations you used to arrive at your answer.
 - (d) Approximate $\int_0^{50} v(t) dt$ with a Riemann sum, using the midpoints of five subintervals of equal length. Using correct units, explain the meaning of this integral.


- 4. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.
 - (a) Find the slope of the graph of f at the point where x = 1.
 - (b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).
 - (c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.
 - (d) Use your solution from part (c) to find f(1.2).

5. The temperature outside a house during a 24-hour period is given by

$$F(t) = 80 - 10\cos\left(\frac{\pi t}{12}\right), \ 0 \le t \le 24,$$

where F(t) is measured in degrees Fahrenheit and t is measured in hours.

(a) Sketch the graph of F on the grid below.

- (b) Find the average temperature, to the nearest degree Fahrenheit, between t = 6 and t = 14.
- (c) An air conditioner cooled the house whenever the outside temperature was at or above 78 degrees Fahrenheit. For what values of t was the air conditioner cooling the house?
- (d) The cost of cooling the house accumulates at the rate of \$0.05 per hour for each degree the outside temperature exceeds 78 degrees Fahrenheit. What was the total cost, to the nearest cent, to cool the house for this 24-hour period?

GO ON TO THE NEXT PAGE

- 6. Consider the curve defined by $2y^3 + 6x^2y 12x^2 + 6y = 1$.
 - (a) Show that $\frac{dy}{dx} = \frac{4x 2xy}{x^2 + y^2 + 1}$.
 - (b) Write an equation of each horizontal tangent line to the curve.
 - (c) The line through the origin with slope -1 is tangent to the curve at point P. Find the x-and y-coordinates of point P.